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Abstract
In this document, some methods are presented that use a heuristic scoring function and
incremental improvement cycles as means to obtain short efficient Write-Once Memory
(WOM) codes. While initially only fixed rate two-write WOM codes were targeted, the
approach has also successfully been applied to unrestricted rate cases, and additionally to
3- to 6-write codes. As extension, the principle of incremental improvement has also been
applied to the “coset coding” method starting from a random parity check matrix. Several
practical  results  were  obtained,  including  two-write  codes   <28>2/7,  <127>2/10,
<2144>2/16  and  <176,94>/10,  three-write  codes  <7,12,8>/6 and <26>3/11  (fixed  rate
1.636),  and  some  convenient  fixed  rate  four-write  codes  ranging  from  <24>4/10  to
<28>4/18, the latter providing a fixed coding rate of 1.778. Also <26>5/16 and <25>6/16
have been found, both with a fixed coding rate of 1.875. Using coset coding and allowing
a “known write number”,  fixed rate results  match or  improve those from [YKS+10],
including codes of sizes  <27>2/10, <213>2/18 and <216>2/22 . The highest unrestricted rate
obtained in this way for the two-write case was 1.50736 for a 40 bit code. In the final
chapter, an excursion is made on how to improve non-guaranteed write performance. 

1 Introduction
In their pioneering work of 1982 [RS82], Rivest and Shamir introduced the concept of a
WOM code and related terminology, its theoretical base, and provided next to the renown
(<4>2/3)-WOM code a different 2-write example, which was a computer generated solution
for a <26>2/7 code. The authors could also prove the non-existence of a <29>2/7 code, but
were unable to find a <27>2/7 code. The question whether a <27>2/7 or even a <28>2/7 code
existed remained unsolved. Triggered by the open question on the “Ponder This” pages
hosted and maintained by IBM research (March 2015 challenge), I decided to try to find a
solution for a <27>2/7 code.  Initially failing to reproduce even the <26>2/7 case,  it  was
directly obvious that any exhaustive search inspired attempt to solve the <27>2/7 case was
very  unlikely  to  succeed.  Introducing an  incremental  optimization  approach based on a
heuristic gave much better results, including an unexpectedly fast solution for the <27>2/7
case.   Encouraged  by  this  result,  I  tried  the  same  approach  on  the  <28>2/7  problem.
Improving  the  algorithm again  with  a  mechanism to  prevent  premature  lock-up  of  the
incremental improvement cycle, a solution was also found for the latter case, solving the
open problem from 1982. Assuming as 28 symbols the letters A…Z, a dot and a space, the
“seven-track paper tape” example from [RS82] now could look like  Table 1. The decimal
representation of the binary encoded pattern is the sum of the row and column labels. The
eligible  “first  write”  positions  correspond  to  28  of  the  possible  29  patterns  having  a
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Hamming  weight  ≤  2  and are  marked  with  bold/underline.  The  rate  of  this  code  is
(2∙log2(28)/7) ≈ 1.3735.

The approach used to obtain this result was first tried on fixed rate 2-write WOM codes of
different length, and because the subject of WOM codes goes far beyond the aforementioned
subclass, it was tempting to try to extend the method to a few other categories. Sometimes
solving a problem raises far more questions than it answers.

All  code  examples  mentioned  in  this  document  have  been  found  using  the  heuristic
techniques described. If  a code of identical dimensions was reported before,  this simply
means that its performance can be matched using the described methods.

2 Basic method for the unrestricted binary two-write 
case

Although initially applied to fixed-rate codes, the method is presented here for the 
unrestricted case, as only a few optimizations depend on the fixed nature of the code. The 
algorithm is in essence a hill climber based on random mutations.

The basic algorithm

In what follows we assume a code of length n, and {v1…vt} the number of different symbols
that we want to be able to write during the t writes respectively (t=2 in this chapter). vmax is
the maximum value of {v1…vt}. The space of encoded patterns {0,1}n and the integer range
{0…2n-1} will be used interchangeably based on binary representation. We assume that each

pattern p Î{0…2n-1} maps to a symbol sp Î{0…vmax-1}, and the symbols that are written

during write i are integers in the range {0…vi-1}. The algorithm starts with a mapping from
each pattern to the symbol 0. In each iteration, a random mutation will be applied to the
current mapping. Two types of mutation are defined, each applied with 50% probability. The
first  mutation type (“point mutation”) replaces the mapping for a random pattern with a
random symbol. The second mutation type (“swap”) exchanges the mappings of two random
patterns.  The mutated mapping is accepted as base for the next iterations if it improves or at
least equals the best value of a heuristic score function so far. The score function (see later)
is designed to return its maximum value iff a solution is found.  
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 A B C D E F G E H I J R K V D X

16 L M N Q O I V space P E V Z U W Y S
32 Q R S V T Q F Y U T E F O M Z N
48 V P D X E A H J Q K space G B L R .
64 W X W M Y . L O Z Q K U E J Q B
80 space V E L Q R P K . N M A G H F T
96 . E Q I S G K W R S L H V space A P

112 S F T B N Z M U J Y W O X D I C

Table 1: Symbol coding table for a <28>²/7 code



Algorithm Find_Basic_Solution
output: pattern to symbol mapping solution

sp ¬ 0, for p in range [0…2n-1]
bestscore ¬ 0
while bestscore < maxscore(v1,v2), do

rp ¬ sp, for p in range [0…2n-1]
mut_type ¬ random(2)
if  mut_type = 0 then

p ¬ random(2n)
rp ¬ random(vmax)

else
p ¬ random(2n)
q ¬ random(2n)
rp ¬  sq

rq ¬  sp

if score(r) ≥ bestscore then
sp ¬ rp, for p in range [0…2n-1]
bestscore ¬ score(r)

return s

The random(x) function used in the algorithm above returns a random integer in the range
{0…x-1}. The performance of the algorithm can be slightly improved at the cost of some
additional complexity by rejecting “mutations” without effect (replacing a symbol by its
original or swapping two identical symbols)
A modification that in practice gives good results is to replace the “swap random positions”
mutation  by  a  “swap  random  neighbours”  mutation,  “neighbours”  being  points  with

Hamming distance 1. In this case, the statement  “q ¬ random(2n)” is replaced by “q ¬ p ^

2random(n)”, with “^” the bitwise exclusive or operator. Although less alterations can generated
by only swapping neighbours, the probability for a random neighbour swap to be accepted
as “improvement” can be much higher than the the probability that a swap of two random
positions is accepted.

The score function

The score function evaluating a mapping needs to be an (at least rough) indicator of how
close its argument is to a solution. Based on the feedback it provides, the evolving sequence
of future inputs should be directed towards higher scores, and yet its execution time should
remain limited as it will be called during each iteration. The score function used here is a
heuristic based on the number of (primary symbol, secondary symbol) pairs supported by
the mapping that is provided as its argument. The minimum score that can be returned is 1
(corresponding  to  the  initial  mapping),  the  maximum  is  the  product  of  the  number  of
symbols  to  be  supported  during  each  write  phase,  so  maxscore(v1,v2) =  v1∙v2  .  If
maxscore(v1,v2) is reached, we found a <v1,v2>/n WOM code. The score function takes into
account that the only valid patterns corresponding to a first write must have a  Hamming
weight low enough to  allow v2  different patterns during the 2nd write, hence the maximum
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Hamming weight HWmax for a first write symbol is given by HW max=⌊n− log2(v2)⌋

Algorithm score_basic
input:  pattern to symbol mapping

s={sp}, p in [0..2n-1]
output: score value

ai ¬ 0 for i in range [0..v1-1]
for p in range [0.. 2n-1] do

if HW(p)≤ HWmax then
bi ¬ 0 for i in range [0..v2-1 ]
for q in range [0.. 2n-1] do

if (q&p) = p then
bsq

 ¬ 1

sum ¬ ∑
i=0

v2−1

bi

if sum ≥ asp
then

asp
¬  sum

sum ¬ ∑
i=0

v1−1

ai

return sum

HW(x) denotes the Hamming weight of the binary representation of x. The operator “&”
performs the bitwise  and function. Hence the expression “(q&p)=p” simply means that q
contains a superset of the bits that are set in p, meaning the pattern q can be written after p
was  written  first.  The  basic  score  function  presented  above  is  computationally  rather
expensive as it iterates over the pattern range in two nested loops. Optimized variants can be
made that are much faster. The variant below back-propagates the covered set to adjacent
patterns with a lower Hamming weight:

Algorithm score_fast1
input:  pattern to symbol mapping

s={sp}, p in [0..2n-1]
output: score value

descendantsp ¬ 0 for p in range [0..2n -1]
for p in 2n-1 downto 0 do

k ¬ sp

mask ¬ 2k | descendantsp

for b in [0..n-1] do
idx ¬ p & (2n-1-2b)
descendantsidx ¬ descendantsidx | mask

maxvali ¬ 0 for i in range [0..v1-1]
for i in [0… #(first_write_patterns)-1] do

idx ¬ first_write_patternsi

val ¬ HW(descendantsidx)
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k ¬ sidx

if val > maxvalk then
maxvalk ¬ val

sum ¬ ∑
k=0

v1−1

maxvalk

return sum

The operators “&” and “|” perform the bitwise and and or functions. The descendants array
elements and the mask variable need to hold at least vmax bits. “low_hw_patterns” is an array
of  constants containing the patterns with Hamming weight ≤ HWmax. The inner “for” loop
can be unrolled and its constant expressions can be precalculated. A considerable fraction of
the assignments in the inner loop could be avoided in cases where idx=p, but at the cost of
additional control flow complexity1.
A still faster variant of the score function for larger n values is implemented in the example
program WOM_finder. That program exploits the fact that the mutation (“point mutation” or
“swap”) leaves most code points unaltered, hence the coverage of supported (1st write, 2nd

write) symbol pairs by the code can be updated in an incremental way each iteration. 

3 Mitigation of search lock-up
The basic algorithm provided in the previous chapter works well for many cases. E.g. the
<27>2/7  code,  undiscovered  since  1982,  was  found  by  a  simple  unoptimized  C
implementation in far less than a second executing on a single CPU core. However, there are
some  serious  restrictions  too.  The  aforementioned  score  function  is  mapping  a  2n

dimensional space of integers in range [0…vmax-1] to a single integer, the function being able
to detect a perfect score, but in some cases even changing a single element of the input can
have a large effect on the output. It is to be expected that, when trying to find a global
maximum of the score function in this way, there is no guarantee that such maximum can be
reached by going only “uphill”. The first crucial mitigation was already part of the basic
algorithm: mutations don’t  have to  bring an improvement  in  order to  be accepted.  It  is
sufficient that they match the best score so far.  This improves the “mobility” in the 2n-
dimensional search space, offering better chances to eventually find an upward path later.
Even so, in many cases this lets the search algorithm get stuck in an subspace from which
there is no escape without going down. There are several techniques to improve the chances
of  finding  a  global  maximum,  e.g.  simulated  annealing,  tabu  search,…  The  method  I
initially applied to find a <28>2/7 solution used a repeated restart at a random position, with
filters that weed out searches that fail to reach a certain score level after a certain amount of
iterations. The filters were adapted to the population in the sense that a fixed fraction of the
searches were allowed to continue at different stages. With this technique, it still took about
150 thread-hours on a Intel® Core i7-4770K to find a solution for the <28>2/7 case. Better

1 On modern processor architectures, computing a branch and conditionally execute a mere few instructions 
is usually slower than executing those instructions always, so the latter is preferred if those instructions 
don’t have unwanted side-effects.
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results  were  obtained  in  the  WOM_finder  program by making the  score  function  itself
adaptive.

The score_basic algorithm contains at the end the statements

sum ¬ ∑
i=0

v1−1

ai ; return sum.

This makes that the score returned is the sum of the maximum number of 2nd write symbols
found for each 1st write symbol. In the case of a solution, that maximum (ai) equals v2 for all
i,  the resulting return value being v1∙v2  .  The score function was updated by introducing
weights for each 1st write symbol, the above statements becoming

sum ¬ ∑
i=0

v1−1

ai⋅wi ; return sum.

The integer weights are selected so that wi ≥1 for all i , and 

∑
i=0

v1−1

w i=v1+bonus

In the case of a solution, the return value now becomes  (v1+ bonus)∙v2  and the definition of

the maxscore function is updated accordingly. The “bonus” is randomly distributed over

the 1st write symbols.

Since the weights are all positive, a solution is still located ‘at the top of the hill’. However,
the priorities can be altered: if e.g. a certain mutation caused an improvement of 2 in the
number of reachable 2nd write symbols for a given 1st write symbol, and a deterioration -3
for  a  different  1st write  symbol,  this  mutation  would  originally  –  ceteris  paribus  –  be
rejected, while with the introduction of the weight function it is now acceptable in some
cases. The idea behind the weight function is that the weights can periodically be reassigned
(e.g.  each  10000  mutations,  random weight  values),  so  that  changing  priorities  let  the
algorithm explore all sub-targets. The mutations that are of benefit for a large fraction of the
score functions2 are now more likely to prevail. 

The method can to some extent be compared to compacting loose sand grains in a bucket.
Trying  to  push  the  sand  down won’t  do  much  good,  but  softly  shaking  the  bucket  in
different horizontal directions will certainly help.  

A solution for the <28>2/7 case now takes around 24 thread-hours, still uncomfortably long,
but a significant improvement over the original. Some highlights of the various codes that
have been found using this technique have been listed in Table 2

2 The weights here considered as defining a set of score functions, not as additional arguments
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Code length
(n)

1st write
symbols

2nd write
symbols

Fixed rate Sum rate

7 28 28 1.3735 1.3735

9 130 47 1.2344 1.3974

10 127 127 1.3977 1.3977

10 176 94 1.3109 1.4014

11 195 195 1.3832 1.3832

15 1280 1280 1.3763 1.3763

15 4944 512 1.2 1.4181

16 2144 2144 1.3833 1.3833

Table 2: 2-write WOM results using arbitrary decoding map

A  more  extensive  list  of  results,  together  with  matching  decoding  tables  and  the
“WOM_finder” program for generating them, is available on [WOM page].

4 Extension to multiple write codes
The definition of the score function in the case of t writes can be easily extended: it now
counts the number of (s1, s2, … st) symbol combinations that are supported by the code over
the t writes (in its basic form). The “bonus” from previous chapter can also be introduced in
this case. Good results were achieved for 3-write and 4-write codes by making the bonus
only  dependent  on  the  1st write  symbol,  so  the  score  function  is  still  computed  as

∑
i=0

v1−1

ai⋅wi , with this time ai defined as the number of (i, s2, … st) symbol combinations

supported by the code. The maximum score then becomes (v1+bonus ) ∏
r=2…t

vr .

For computing the number of “supported” symbol combinations, for each of the t writes
only those patterns are considered that are eligible to be written in the corresponding write
as part of an actual solution. The list of candidate patterns can be precomputed and obtained
as follows:

• All 2n patterns are eligible for the last write t

• The patterns eligible for write t-1 are those for which at least vt last write patterns 

are possible

• The patterns eligible for write t-2 are those for which at least vt-1 patterns eligible for

write t-1 are possible.

• …

• The patterns eligible for write 1 are those for which at least v2 patterns eligible for 

write 2 are possible.
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Obviously a solution is only possible if the number of eligible patterns for the 1 st write is ≥
v1.  It  is  easy  to  see  that  each  of  the  pattern  sets  eligible  for  a  given  write  number
corresponds to the patterns bound by a maximum Hamming weight, which increases with
the write number. Some codes obtained using this technique have been listed in Table 3.

Number of
writes (t)

Code length
[bits] (n)

Symbols written Fixed rate Sum rate

3 5 6,5,6 1.3932 1.4984

3 6 7,12,8 1.4037 1.5654

3 8 20,15,15 1.4651 1.5170

3 9 24,24,24 1.5283 1.5283

3 10 36,36,36 1.5510 1.5510

3 11 (*) 56,56,56 1.5838 1.5838

4 9 10,14,14,14 1.4764 1.6382

4 10 16,16,16,16 1.6 1.6

4 12 32,32,32,32 1.6667 1.6667

4 14 64,64,64,64 1.7143 1.7143

Table 3: Multi write codes obtained by extension of the score function

All codes listed above can be decoded without knowing the write number. (*) The result for
3 writes in 11 bit will be further improved using the hybrid technique described in chapter 6.

5 Application of heuristic search to coset-coding
The concept of coset-coding was introduced by Cohen et al. in [CGM86]. Efficient two-
write WOM codes based on a random parity check matrix were reported by Yaakobi et al. in
[YKS+10]. The highest reported fixed rate found by computer search using their approach
was 1.4546, the highest unrestricted rate 1.4928. A fixed rate of 1.375 was also reported for
a constructed 16 bit code. Codes reported in [YKS+10] assume a “known write number”,
which has a negligible effect on the coding rate when considering a large number of blocks
being written together. The method involves in essence counting the number of full-rank
submatrices that are contained in the parity check matrix, a time-consuming task for larger

codes. The number of possible submatrices (obtained by omitting columns) is  ∑
j=0... k

(nj)
for a code of length n and supporting 2n-k second write symbols.

The number of full-rank submatrices found is the number of 1st write symbols supported by
the code (assuming ‘known write number’) and hence direct metric of how well a given
parity check matrix performs when trying to optimize the number of first write symbols. 

A variant with unknown write number computes the syndromes of the potential 1st write
patterns found as described, and then reduces this set allowing each syndrome to occur only
once. In this case the metric becomes the number of different syndromes usable as 1st write
symbol.
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The most obvious algorithm to achieve a well-performing matrix would be a simple trial and
error,  evaluating  a  large  number  of  random matrices  and retaining  the  “best”  one.  The
method I used to search codes is based on the following observations:

1) There is at least a weak relation between the performance of a parity check matrix 
and a modified matrix that is altered in one of the following ways:

◦ modification of a low number of elements

◦ applying a column addition

◦ applying a row addition (‘unknown write number’ case)

For the 1st and 2nd alteration types, the submatrices containing only unaffected 
columns will yield the same result as before, while the 3rd type can influence the 
number of collisions in the ‘unknown write number’ case, but will not affect the 
number of full rank submatrices.

2) It is possible to perform an estimate which candidates of a group of parity check 
matrices contain the highest number of full rank submatrices. To achieve this, a 
statistical sample of submatrices can be evaluated much faster than is required for a 
full count. Multiple ‘selection rounds’ using increasing sample sizes can be set up in 
order to improve the average score of the population.

In order to find a “good” parity check matrix, we start with chosing a random matrix, and its
number of 1st write symbols supported is computed by counting the full rank submatrices (or
in  case  an  unknown  write  number  is  desired,  the  related  number  of  non-colliding
syndromes).

A large number of mutated matrices are then produced, and preselection rounds based on
statistical  sampling  of  submatrices  are  performed,  improving  the  average  fitness  of  the
remaining candidates. For a matrix coming through all preselections, again a full count is
performed. If it improves or matches the initial matrix, it is used as “parent” for a new set of
mutations etc.

Some results obtained for the “unknown write number” and “known write number” cases
are provided in Table 4 and Table 5 .
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Code length
(n)

1st write
symbols

2nd write
symbols

Fixed rate Sum rate

18 6386 213 1.4045 1.4245

22 52530 216 1.4255 1.4400

25 244730 218 1.4321 1.4360

30 3214262 222 1.4411 1.4539

36 58106045 227 1.4329 1.4664

37 121762880 227 1.4519 1.4557

Table 4: "Coset coding" results for 2-write codes, unknown write number

Code length
(n)

1st write
symbols

2nd write
symbols

Fixed rate Sum rate

10 (**) 130 27 1.4 1.4022

10 304 26 1.2 1.4248

14 (**) 1058 210 1.4286 1.4319

16 (*), (**) 5065 211 1.375 1.4566

18  (**) 8380 213 1.4444 1.4463

22  (**) 67522 216 1.4545 1.4565

26  (**) 564962 219 1.4615 1.4657

30   (**)4722654 222 1.4667 1.4724

34  (**) 39012018 225 1.4706 1.4770

34 1135925814 221 1.2353 1.5024

38  (**) 341410434 228 1.4738 1.4828

40 10533443416 227 1.35 1.5074

Table 5: "Coset coding" results for 2-write codes, known write number

(*) A code of these exact dimensions has been reported in [YKS+10]. This shows that the
heuristic method can – at least in this case – match a result found by construction.

(**) Fixed rate code can be obtained by reducing the number of used 1st write symbols

A more extensive list of results, together with matching parity check matrices, is available
on [WOM page].

6 Hybrid approach for multiple write codes
The direct use of a score function as sole mechanism to determine all 2n symbols in the
decoding map for a code of  length n is  only practical  for low n.  The following hybrid
approach for a t-write code is usable in t ≥ 3 cases in which 2k symbols are supported for the
last write, and has been successfully applied to produce high fixed-rate results on 3- to 7-
write WOM codes

• Using the optimization method described in the previous chapter, find a k ⨯ n parity

check matrix with a high amount of 1st write vectors for the 2-write case. For each bit
vector v for which the Hamming weight HW(v) ≥ n ‐ k, use the parity check matrix
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to compute the syndrome of v and pre-assign it as its symbol.

• Using the  heuristic  search principle  from chapter  4,  apply  only mutations  to  the

vectors for which HW(v) < n ‐ k .

The latter search is now performed over a restricted range, covering only vectors that are
eligible for write  numbers smaller than t.  The parity check step is  far  more efficient  in
finding candidate points for the penultimate write. The restriction that for each such vector,
all 2k reachable symbols in write t need to be different, makes it hard to apply mutations for
HW(v) ≥ n ‐ k that don’t result in deterioration of the score. Some codes that have been
found using this technique are listed in Table 6. All these codes have a single decoding map,
i.e. the decoder does not need to know the write number. Several constructions exist for high
rate multiple write WOM codes, e.g. the ones in [YKS+12] for unrestricted rate, and [WJ10]
for fixed rate. The search here was focused on achieving high fixed rate results. The fixed
rates achieved are the highest so far for codes of this length.

Number of
writes (t)

Code length
[bits] (n)

Symbols written Fixed rate Sum rate

3 8 16,16,16 1.5 1.5

3 11 67,68,64 1.6364 1.6503

3 12 72,160,64 1.5 1.6243

4 16 128,128,128,128 1.75 1.75

4 18 256,256,256,256 1.7778 1.7778

5 9 8,8,8,8,8 1.6667 1.6667

5 14 32,32,32,32,32 1.7857 1.7857

5 16 64,64,64,64,64 1.875 1.875

6 10 8,8,8,8,8,8 1.8 1.8

6 16 32,32,32,32,32,32 1.875 1.875

7 15 16,16,16,16,16,16,16 1.8667 1.8667

Table 6: Multiple write results using hybrid approach

7 Squeezing out more
All WOM codes discussed thus far provide a guaranteed number of writes for the given set
of symbols. Fixed rate unsynchronized codes have the advantage that, besides the simpler
decoding process, it is possible to improve the average number of supported writes for high
entropy data by using smart selection at the encoder side: if multiple coding options are
available for the next write, we select the one that offers the highest average number of
remaining writes (usually one of the options having the lowest possible Hamming weight),
bound to the restriction that the number of remaining guaranteed writes is respected. In this
way it can be possible to perform one or more “best effort” writes on top of the t writes that
are guaranteed by the code. 

The  problem remains  of  course,  how to  detect  whether  the  extra  write  has  succeeded?
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Keeping an additional bit per block as indicator severely affects the coding rate for short
codes, while clustering the codes and sharing a single indicator reduces the probability that a
“best effort” write is possible for all members of the cluster.  The obvious solution is to
reserve the code pattern for which all n bits are set to ‘1’  as the “dead code” or “failed
write”  indicator.  This  requires  only a  slight  modification  in  the  hill  climber  code:  only
patterns {0… 2n-2} are eligible for mutation. If we can produce a fixed-rate code in which
we  can  avoid  the  all  ‘1’ pattern,  the  option  to  store  “best  effort”  symbols  after  the  t
guaranteed writes comes without dedicated storage bits. It is easy to see that this effectively
transforms a fixed rate  <m>t /  n  code into  “<m>t-1<m+1> /  n”,  the  “+1” indicating  the
support for the additional “failed write” symbol as last  write3.  When an amount of data
needs to be written to a high number of code blocks, the blocks that cannot be written are set
to all ‘1’ and are just skipped by the encoder. 

To illustrate the process, assume we use a <27, 27, 27, 27+1> / 16 code to store 7 bit data
items (for this case a code with “failed write” support was found ). We have N 16 bit blocks
available, which means that for each of the first 4 writes, we can store N data items, each
using up ¼  of  the  guaranteed  fixed  coding rate  of  1.750.  In  a  5th “best  effort”  write,
simulation on this code shows that in the case of uniform random data, we can store about
0.634 N data items in the same blocks (assuming sequential access), and still retrieve them
using a very simple decoding process (single lookup of the code pattern in a 64K ⨯ 7 bit
decoding table, skip block if the pattern is 0xFFFF). A 6th write would add another 0.157 N
data items. The total coding rate using these 6 writes then becomes about 2.096 (ignoring
later writes with marginal contribution). 

However, this code still contains many degrees of freedom. An effort was made to improve
its  “best  effort”  rate,  while  preserving its  fixed rate  property for  the guaranteed  writes.
Again, a heuristic method was used, starting from the code in previous paragraph. Using the
same “point mutation” and “swap” random mutations, we work on the code with the “score”
function now redefined as follows:

• If the code does not correspond to a valid t write fixed rate code for the m symbols,

the score is 0 (a harsh measure to retain the most desirable property)

• If the code corresponds to a valid t write fixed rate code for the m symbols, the score

is the statistically expected number of writes NW(s,m,0) supported by the code s

The NW(s,m,p) function is defined as the average number of remaining writes that the code
s (an array of 2n symbols in range [0..m] ) supports when starting at the written pattern p.
The symbol m is reserved for the last pattern (p=2n  -1) of the code, for all others we have
0≤sp<m.

If a pattern p cannot be altered so it decodes into a different symbol  ≠m (most likely its
Hamming weight being n-1 already), the symbol sp is the only symbol that can be written.
The probability that this happens the next write is 1/m, and the probability this happens for

3 Unfortunately, in the case of a <2k>t / n code, the codes with Hamming weight n-k can not longer be used 
for the penultimate guaranteed write. Max Hamming weight for penultimate write now becomes n-k-1.
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the next two writes is 1/m2 etc… Therefore, in this case NW(s,m,p) = m-1 + m-2 + m-3 + … =
1/(m-1)

For each write i, there is a probability 1/m that we want to write the symbol k i. The write
will succeed if we find a pattern q that can be obtained by altering p for which sq=ki . The
special case just described corresponds to ki  = sp. For each possible value  k ≠ sp, we now
find the pattern qk, reachable from p, for which sq = k and NW(s,m,qk) is maximized under
this constraint. If such qk is found, then the contribution to the expected number of writes of
a transition to symbol k during the next write is (NW(s,m,qk)+1)/m. Taking into account that
we may first write sp again any number of times and then k, the contribution of a transition
to k becomes  (NW(s,m,qk)+1) / (m-1). If qk does not exist, there is no contribution. Adding
up all the probabilities, we get 

NW (s ,m, p)=
1

m−1 [1+ ∑
k∈[0..m−1 ]∖{sp }

if (∃q :(q & p=p)∧(sq=k )) {1+maxq : (q& p=p )∧(sq=k )NW (s ,m ,q )}else 0]
with the operator “&” meaning “bitwise and”. NW(s,m,0) can be obtained free of recursion
by  computing  NW(s,m,p)  for  all  p  decreasing  from  2n  -  2  down  to  0.  Obviously  if  s
represents a valid <m>t / n code, NW(s,m,0) ≥ t .

An optimization run of 12∙106 cycles was performed on the originally obtained code in an
attempt to  optimize the “best effort” coding rate. Simulation shows that the number of items
written during the 5th write was improved from 0.634 N to 0.692 N, and for the 6th write
from  0.157  N  to  0.183  N,  while  maintaining  the  guaranteed  4  writes  for  all  symbol
combinations  (see  Table  7).  If  we  drop  the  requirement  that  the  1st 4  writes  must  be
guaranteed, the rate can be slightly improved again. The performance of a pure random code
has been added for comparison. The cumulative coding rates are provided in  Table 8. All
codes have a “failed write” detection built in.

In an application that relies on the predictable performance of the “best effort” writes, it may
be recommended to scramble low entropy data streams (in the case of sequential access) or
to apply a transformation that depends on storage location (random access).

Write
number

Original
<27>4 / 16 code

Optimized 
<27>4 / 16 code

Random
code

Optimized “best
effort” code

1 100.000% 100.000% 100.000% 100.000%

2 100.000% 100.000% 100.000% 100.000%

3 100.000% 100.000% 99.990% 100.000%

4 100.000% 100.000% 89.377% 99.984%

5 63.450% 69.225% 41.746% 71.356%

6 15.731% 18.346% 8.996% 19.246%

7 1.979% 2.406% 1.079% 2.543%

8 0.157% 0.196% 0.085% 0.208%

9 0.009% 0.011% 0.005% 0.012%

10 0.0004% 0.0005% 0.0002% 0.0006%

Table 7: Fraction of successful write attempts (108 random trials)
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Write
number

Original
<27>4 / 16 code

Optimized 
<27>4 / 16 code

Random
code 

Optimized “best
effort” code

4 1.7500 1.7500 1.7035 1.7499

5 2.0276 2.0529 1.8861 2.0621

6 2.0964 2.1331 1.9255 2.1463

10 2.1058 2.1446 1.9306 2.1584

Table 8: Cumulative coding rate (108 random trials)

On a <24,24,24,24,24,24+1>/16  code, using the same method an average number of 10.87
writes was achieved, the 10th write successful in 84% of the cases.
Two practical examples illustrating how to build an efficient memory with the latter code as
base element are provided on [WOM page]. In cyclical storage applications (e.g. security
video) a rate of above 2.5 can be achieved with it.

Conclusion 
A number of techniques were presented that allow to find WOM codes of relatively small
size. Most of the codes (except some of the larger ones using coset coding) are small enough
to  a  allow a  fast  table  based encoding and decoding process,  while  maintaining  a  high
coding rate. Some practical results with high fixed rate were obtained using symbol counts
that are a power of 2, which would certainly help the efficient implementation of systems
using these  codes.  Detailed  results  including decoding maps,  parity  check matrices  and
sample programs have been published on dedicated pages

http://users.telenet.be/bertdobbelaere/WOM

The work related to heuristics is far from over in this field. A large number of challenges
remain, of which a few will be discussed below.

Future work

Of particular interest is the improvement of the score functions, which currently provide a
fair indication of the solution ‘quality’, but offer still a very weak distance metric to better
solutions. A similar statement holds for the set of allowed mutations: the mutation types
(‘point mutations’ and ‘swaps’) and probabilities were empirically determined, but there is
no theoretical base explaining why this choice would give better results than some other
mutation types that can be thought of. It is very likely that the convergence to a high quality
solution can be made to happen much faster, and in many cases even possible, by applying
subtle  changes  to  the  score  function  and/or  the  allowed  set  of  mutations.  Also,  I  only
focused my solution search so far on hill climbing. Alternative approaches like simulated
annealing have not been investigated. 
Another point of attention is the success rate of the applied mutations. The vast majority of
the attempted mutations are “stillborns”, having no change at all to lead to an improvement,
but  yet  having  consumed  considerable  resources  to  allow  the  mere  detection  of  their
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unfitness. Rules of thumb for quicker detection of chance-less mutations can considerably
improve the convergence speed. 
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