# Begin of <29,26>/7 synchronized WOM code Generation 1: 0<=HW(x)<=2 0 0000000 1 0000001 2 0000010 3 0000011 4 0000100 5 0000101 6 0000110 7 0001000 8 0001001 9 0001010 10 0001100 11 0010000 12 0010001 13 0010010 14 0010100 15 0011000 16 0100000 17 0100001 18 0100010 19 0100100 20 0101000 21 0110000 22 1000000 23 1000001 24 1000010 25 1000100 26 1001000 27 1010000 28 1100000 Generation 2: 3<=HW(x)<=7 0 0000111 0101001 0101010 1010011 1111100 1 0001011 0010101 1110001 1111110 2 0001101 0111100 1001110 1110011 3 0001110 0100101 1010100 1111011 4 0001111 0110110 1000110 1111001 5 0010011 0110100 1101111 1111000 6 0010110 0011011 1101101 1110010 7 0010111 0110001 1001001 1011000 1101110 8 0011001 0101101 1001011 1110110 9 0011010 0100110 1000011 1111101 10 0011100 0110101 1010110 1101011 11 0011101 0100111 1000101 1111010 12 0011110 0111000 1011001 1100111 13 0011111 1100011 1101100 1110000 14 0100011 0111001 1011110 1100101 15 0101011 1011100 1110111 16 0101100 0110010 1011111 1100001 17 0101110 0110011 1011101 1100010 18 0101111 1011011 1110100 19 0110111 1001101 1011010 1101000 20 0111010 1001111 1110101 21 0111011 1001100 1010101 1100110 22 0111101 1000111 1010010 1101010 23 0111110 1010111 1101001 24 0111111 1001010 1010001 1100100 25 1111111 # End of <29,26>/7 synchronized WOM code # Rfixed = 1.342983 # Rsum = 1.365489